已知函数f(x)=x3+sinx,x∈(-1,1),且f(x)在(-1,1)上是增函数,则不等式f(x-1)+f(x)≥0的解集为( ) A.(−1,12] B.(0,12] C.[12,1) D.[12,2)
问题描述:
已知函数f(x)=x3+sinx,x∈(-1,1),且f(x)在(-1,1)上是增函数,则不等式f(x-1)+f(x)≥0的解集为( )
A. (−1,
]1 2
B. (0,
]1 2
C. [
,1)1 2
D. [
,2) 1 2
答
证明:∵f(-x)=(-x)3+sin(-x)=-(x3+sinx)=-f(x)
函数f(x)是奇函数,又f(x)在(-1,1)上是增函数,
原不等式可化为f(x-1)≥-f(x)=f(-x)
可得1>x-1≥-x>-1,
解得,不等式的解析为[
,1).1 2
故选C.