cosx(1-sinx)的最大值是多少?

问题描述:

cosx(1-sinx)的最大值是多少?

答:
f(x)=cosx(1-sinx)
求导:
f'(x)=-sinx(1-sinx)+cosx*(-cosx)
=-sinx+(sinx)^2-1+(sinx)^2
=2(sinx)^2-sinx-1
=(2sinx+1)(sinx-1)
sinx=1或者sinx=-1/2时,f'(x)=0
-10,f(x)单调递增
-1/2sinx=-1/2、cosx=√3/2时取得最大值3√3/4
sinx=-1/2,cosx=-√3/2时取得最小值-3√3/4