一道偏导题z=xy+xF(u) u=y/x 证明x(∂z/∂x)+y(∂z/∂y)=z+xy

问题描述:

一道偏导题z=xy+xF(u) u=y/x 证明x(∂z/∂x)+y(∂z/∂y)=z+xy
需要非常详细的具体步骤

已知:z=xy+xF(u) (1) u=y/x (2)
求证:x(∂z/∂x)+y(∂z/∂y)=z+xy (3)
证明:∂z/∂x=y+F+xdF/du ∂u/∂x
=y+F+xdF/dx (-y/x^2) (4)
x∂z/∂x=xy+xF-ydF/dx
= z-ydF/dx (5)
∂z/∂y=x+xdF/du ∂u/∂y
=x+dF/du (6)
y∂z/∂y=xy+ydF/du (7)
将(5)和(7)式相加,得到:
x(∂z/∂x)+y(∂z/∂y)=z+xy (3)
证毕.