直线L:ax-y-i=0与双曲线C:x^2-2y^2=1相交于PQ两点,是否存在实数a,使得以PQ为直径的圆过原点!说明理由
问题描述:
直线L:ax-y-i=0与双曲线C:x^2-2y^2=1相交于PQ两点,是否存在实数a,使得以PQ为直径的圆过原点!说明理由
存在求值,不存在说明理由?
答
设P(x1,y1),Q(x2,y2)ax-y-1=0x^2-2y^2=1联立∴(1-2a^2)x^2+4ax-3=0.若1-2a^2=0,即a=±√2/2时,l与C的渐近线平行,l与C只有一个交点,与题意不合,1-2a^2≠0Δ=(4a)^2-4(1-2a^2)(-3)>0,∴-√6/2<a<√6/2.x...