证明函数y=2x/(x+1)在(-1,+∞)上为增函数

问题描述:

证明函数y=2x/(x+1)在(-1,+∞)上为增函数

方法一:
设-1y(x1)-y(x2)=2(x1-x2)/(x1+1)(x2+1)∴y(x1)方法二:
求导(估计你没学)
y'x=2/(x+1)^2>0
所以函数在(-1,+∞)上为增函数
其实函数在(-∞,-1)∪(-1,+∞)上都是增函数
只不过-1取不到所以把单调区间分开了