{an}为以2为首项,-1为公差的等比数列,令bn=(1/2)的an次方,证{bn}为等比数列并求{bn}的通项公式.
问题描述:
{an}为以2为首项,-1为公差的等比数列,令bn=(1/2)的an次方,证{bn}为等比数列并求{bn}的通项公式.
答
{an}为以2为首项,-1为公差的等比数列
an=2-1(n-1)=-n+3
bn=(1/2)的an次方
=(1/2)^(3-n)
b(n-1)=(1/2)^(4-n)
bn/b(n-1)
=(1/2)^(3-n-4+n)
=(1/2)^(-1)
=2
∴bn是等比数列
公比=2
b1=(1/2)^2
∴bn=(1/2)^2*2^(n-1)
=(1/2)^2*(1/2)^(1-n)
=(1/2)^(3-n)