已知数列{an}的前n项的和为Sn,且1/S1+1/S2+ +1/Sn=n/(n+1) (1)求S1,S2及Sn.(2)设bn=(1/2)^an,数列{bn}的前n项和为Tn,若对一切n∈N*均有Tn∈(1/m ,m^2-6m+16/3 ),求实数m的取值范围.
问题描述:
已知数列{an}的前n项的和为Sn,且1/S1+1/S2+ +1/Sn=n/(n+1) (1)求S1,S2及Sn.
(2)设bn=(1/2)^an,数列{bn}的前n项和为Tn,若对一切n∈N*均有Tn∈(1/m ,m^2-6m+16/3 ),求实数m的取值范围.
答
1)令n=1,得1/S1=1/(1+1)=1/2,所以S1=2;令n=2,得1/S1+1/S2=2/(2+1),且S1=2,得S2=6因为,1/S1+1/S2+……+1/Sn=n/(n+1)所以,1/S1+1/S2+……+1/S(n-1)=(n-1)/(n-1+1)=(n-1)/n两式相减,得1/Sn=n/(n+1)-(n-1)/n=1/(n*(n+1...