函数y=3sinx+cosx,x∈[−π2,π2]的最大值为( ) A.1 B.2 C.3 D.32
问题描述:
函数y=
sinx+cosx,x∈[−
3
,π 2
]的最大值为( )π 2
A. 1
B. 2
C.
3
D.
3
2
答
y=
sinx+cosx=2sin(x+
3
)π 6
∵x∈[−
,π 2
]π 2
∴-
≤x+π 3
≤π 6
2π 3
∴sin(x+
)≤1π 6
∴函数的最大值为2
故选B