(2006•烟台)已知:关于x的一元二次方程x2-(R+r)x+14d2=0无实数根,其中R,r分别是⊙O1,⊙O2的半径,d为此两圆的圆心距,则⊙O1,⊙O2的位置关系为( ) A.外离 B.相切 C.相交 D.内含
问题描述:
(2006•烟台)已知:关于x的一元二次方程x2-(R+r)x+
d2=0无实数根,其中R,r分别是⊙O1,⊙O2的半径,d为此两圆的圆心距,则⊙O1,⊙O2的位置关系为( )1 4
A. 外离
B. 相切
C. 相交
D. 内含
答
根据题意,方程无实数根,可得(R+r)2-d2<0,
则:(R+r+d)(R+r-d)<0,
因为R+r+d>0,所以R+r-d<0,
即:d>R+r,
那么,两圆外离.
故选A.