已经知道 级数 ∑(un)^2 ∑(vn)^2 都收敛 证明 ∑(un+vn)^2 也收敛
问题描述:
已经知道 级数 ∑(un)^2 ∑(vn)^2 都收敛 证明 ∑(un+vn)^2 也收敛
如果用到绝对收敛 说出 绝对收敛的在此的 用法
答
(un+vn)^2=(un)^2 +2unvn+(vn)^2《(un)^2 +2|unvn|+(vn)^2《2[(un)^2 +(vn)^2]
级数 ∑(un)^2 ∑(vn)^2 都收敛,所以级数2[(un)^2 +(vn)^2]收敛,由比较判别法故级数∑(un+vn)^2 也收敛