已知函数f(x)=x5+x-3在区间【1,2】内有零点,求方程x5+x-3=0在区间【1,2】内的一个实数解,精确到0.1

问题描述:

已知函数f(x)=x5+x-3在区间【1,2】内有零点,求方程x5+x-3=0在区间【1,2】内的一个实数解,精确到0.1
thank you

采用迭代法即可.当然用牛顿切线法收敛更快.x5+x-3=0得x=(3-x)^(1/5)令x=1,第一步迭代结果为x=2^(1/5)=1.1487令x=1.1487,第二步迭代结果为x=(3-1.1487)^(1/5)=1.1311第三步迭代结果为x=(3-1.1311)^(1/5)=1.1332下面分...