观察分析下列方程(1)x+2/x=3;(2)x+6/x=5;(3)x+12/x=7,请利用它们所蕴含的规律,求关于x的方程
问题描述:
观察分析下列方程(1)x+2/x=3;(2)x+6/x=5;(3)x+12/x=7,请利用它们所蕴含的规律,求关于x的方程
x+(n^2+n)/(x-3)=2n+4的根,你的答案是,
答
这些方程可变为:(1)x+1*2/x=2*1+1;(2)x+2*3/x=2*2+1;(3)x+3*4/x=2*3+1所以第n个方程为:x+n(n+1)/x=2n+1解这个方程:x+n(n+1)/x=2n+1x²+n(n+1)=(2n+1)xx²-(2n+1)x+n(n+1)=0(x-n)(x-(n+1))=0解得...