已知等差数列{an}的前n项和为Sn,令bn=1/Sn,且a4b4=2/5,S6-S3=15,求: (1)数列{bn}的通项公式; (2)Tn=b1+b2+b3+…+bn,求Tn的值.

问题描述:

已知等差数列{an}的前n项和为Sn,令bn=

1
Sn
,且a4b4=
2
5
,S6-S3=15,求:
(1)数列{bn}的通项公式;
(2)Tn=b1+b2+b3+…+bn,求Tn的值.

(1)设等差数列{an}的公差为d,则有已知得:

a1+3d
4a1+
4×3
2
2
5
 
6a1+
6×5
2
d−(3a1+
3×2
2
d)=15
⇒a1=d=1,
所以an=a1+(n-1)d=n.
所以:Sn
n(n+1)
2

故:bn=
2
n(n+1)

(2)Tn
=b1+b2+b3+…+bn
=2(1-
1
2
)+2(
1
2
-
1
3
)+2(
1
3
-
1
4
)+…+2(
1
n
1
n+1

=2(1-
1
n+1

=
2n
n+1