已知等差数列{an}的前n项和为Sn,令bn=1/Sn,且a4b4=2/5,S6-S3=15,求: (1)数列{bn}的通项公式; (2)Tn=b1+b2+b3+…+bn,求Tn的值.
问题描述:
已知等差数列{an}的前n项和为Sn,令bn=
,且a4b4=1 Sn
,S6-S3=15,求:2 5
(1)数列{bn}的通项公式;
(2)Tn=b1+b2+b3+…+bn,求Tn的值.
答
(1)设等差数列{an}的公差为d,则有已知得:
⇒a1=d=1,
=
a1+3d 4a1+
d 4×3 2
2 5 6a1+
d−(3a1+6×5 2
d)=153×2 2
所以an=a1+(n-1)d=n.
所以:Sn=
.n(n+1) 2
故:bn=
.2 n(n+1)
(2)Tn
=b1+b2+b3+…+bn
=2(1-
)+2(1 2
-1 2
)+2(1 3
-1 3
)+…+2(1 4
−1 n
)1 n+1
=2(1-
)1 n+1
=
.2n n+1