正项数列{an}的前n项和Sn满足S2n−(n2+n−1)Sn−(n2+n)=0,则数列{an}的通项公式an=_.
问题描述:
正项数列{an}的前n项和Sn满足
−(n2+n−1)Sn−(n2+n)=0,则数列{an}的通项公式an=______.
S
2n
答
由
−(n2+n−1)Sn−(n2+n)=0,解得Sn=n2+n或Sn=-1(舍),
S
2n
当n≥2时,an=Sn-Sn-1=(n2+n)-[(n-1)2+(n-1)]=2n;
当n=1时,Sn=2适合上式,
∴an=2n.
故答案为:2n.