正项数列{an}的前n项和Sn满足S2n−(n2+n−1)Sn−(n2+n)=0,则数列{an}的通项公式an=_.

问题描述:

正项数列{an}的前n项和Sn满足

S 2n
−(n2+n−1)Sn−(n2+n)=0,则数列{an}的通项公式an=______.

S 2n
−(n2+n−1)Sn−(n2+n)=0,解得Snn2+n或Sn=-1(舍),
当n≥2时,an=Sn-Sn-1=(n2+n)-[(n-1)2+(n-1)]=2n;
当n=1时,Sn=2适合上式,
∴an=2n.
故答案为:2n.