梯形ABCD中AD‖BC,AD=3,DC=5,AB=4根号2,角B等于45°动点M从B点出发
问题描述:
梯形ABCD中AD‖BC,AD=3,DC=5,AB=4根号2,角B等于45°动点M从B点出发
梯形ABCD中AD‖BC,AD=3,DC=5,AB=4√2,∠B等于45°动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒.
(1)求BC的长
(2)当MN‖AB时,求t的值
(3)试研究:t为何值时,△MNC为等腰三角形.
要过程
答
1.BC=4+3+3=10
2.由题,10+2(T平方-10T+25)/T=2T,解得,T=5
3.当(5-T)/3=T/5,即T=25/8时,三角形MNC是等腰