已知数列log2(an-1)为等差数列且a1=3 a2=5

问题描述:

已知数列log2(an-1)为等差数列且a1=3 a2=5
1.求证:数列(an-1)是等比数列
2.求(a2-a1)分之一+(a3-a2)分之一+.+((an+1)—an)分子一 的值

设数列 log2(an-1) 公差为dd = long2(an-1)-log2(a(n-1)-1) = log2[ (an-1)/(a(n-1)-1]所以 (an-1)/(a(n-1)-1) = 2^d而由a1=3 a2=5,可知 d=log2 4/long2 2 = 2所以,an-1 = 2^n 2.a(k+1) -ak = 2^(k+1)-2^k =2^k所以 ...