AD是Rt△的斜边BC边上的高,BE平分∠ABC交AD于G,交AC于E,过E做EF⊥BC于F,1)AG=AE;2)四边形AEFG是菱形

问题描述:

AD是Rt△的斜边BC边上的高,BE平分∠ABC交AD于G,交AC于E,过E做EF⊥BC于F,1)AG=AE;2)四边形AEFG是菱形
已知,如图,AD是Rt△的斜边BC边上的高,BE平分∠ABC交AD于G,交AC于E,过E做EF⊥BC于F,试说明:(1)AG=AE;(2)四边形AEFG是菱形

1.∵∠C+DAC=90°,∠BAD+∠DAC=90°
∴∠C=∠BAD
∵BE平分∠ABC
∴∠ABE=∠CBE
∵∠AGE=∠BAD+∠ABE,∠AEG=∠C+∠CBE
∴∠AGE=∠AEG
∴AG=AE
2.∵BE平分∠ABC,EF⊥BC,EA⊥AB
∴EA=EF=AG
∵AD⊥BC,EF⊥BC
∴AD//EF
∵AG=EF
∴AGFE是平行四边形,
因为AG=AE
∴四边形AEFG是菱形