已知f(x)=ax+(a-1)/x+2a-1,其中a>0,g(x)=lnx 1.若f(x)≥g(x)在x∈[1,+∞]恒成立,求正数a的取值范围.
问题描述:
已知f(x)=ax+(a-1)/x+2a-1,其中a>0,g(x)=lnx 1.若f(x)≥g(x)在x∈[1,+∞]恒成立,求正数a的取值范围.
2.(ⅰ)求证:当x>0时,xg(1+1/x)
答
(1)h(x)=f(x)-g(x)=ax+(a-1)/x+2a-1-lnx,h'(x)=a-(a-1)/x^2-1/x=0,x=1,x=(1-a)/a若a>=1/2,(1-a)/a==0,a>=1/2,若a1,x=(1-a)/a为极小值点,f((1-a)/a)>=0,a>=1/2矛盾,故a>=1/2(2)取a=1/2,f(x)=(x-1/x)/2,由(1),f(x)>=g(...