证明:若抛物线方程y平方=2px(P>0),过(2p,0)的直线与之交于A,B两点,则OA⊥OB
问题描述:
证明:若抛物线方程y平方=2px(P>0),过(2p,0)的直线与之交于A,B两点,则OA⊥OB
答
直线AB过(2p,0),
设方程为x=ty+2p
x=ty+2p与y²=2px联立,消去x得:
y²=2pty+4p²即y²-2pty-4p²=0
设A(x1,y1),B(x2,y2)
根据韦达定理:
y1+y2=2pt,y1y2=-4p²
∵y²1*y²2=2px1*2px2=4p²(x1x2)
∴x1x2=(-4p²)²/(4p²)=4p²
∴向量OA●OB
=(x1,y1)●(x2,y2)
=x1x2+y1y2
=4p²-4p²
=0
∴向量OA⊥向量OB
∴OA⊥OB