如图,自矩形ABCD的顶点C作CE⊥BD,E为垂足,延长EC至F,使CF=BD,连接AF,求∠BAF的大小.
问题描述:
如图,自矩形ABCD的顶点C作CE⊥BD,E为垂足,延长EC至F,使CF=BD,连接AF,求∠BAF的大小.
答
如图,连接AC,则AC=BD=CF,
所以∠F=∠5
而且∠1=∠3
∠4=∠6-∠7=∠BEF+∠F-∠7
=90°-∠7+∠F
=∠1+∠F
=∠3+∠5
=∠2
∴∠4=∠2=
=45°,90° 2
∴∠BAF的度数为45°.