已知等比数列{an}中,a4-a2=a2+a3=24,记数列{an}的前n项和为Sn,

问题描述:

已知等比数列{an}中,a4-a2=a2+a3=24,记数列{an}的前n项和为Sn,
1、求数列{an}的通项公式
2、数列{bn}中,b1=2,b2=3,数列{bn}的前n项和Tn满足:T(n+1)+ T(n-1)=2Tn+1(n>=2,n∈N*),求Sn/2-2^(bn)的值

(1)全化为首项a1和公比q.列出方程式a1*q^3-a1*q=24和a1*q+a1*q^2=24.解得a1=4 ,q=2
得出an=2^(n+1)
(2)通过移项得T(n+1)-Tn=Tn-T(n-1)=1.即b(n+1)=bn+1.bn通项为bn=n+1
Sn/2=2(2^n-1)
Sn/2-2^(bn)=2^(n+1)-2-2^(n+1)=-2
就是这样=