已知函数f(x)=e^x(x^2+ax-a)其中a是常数,若存在实数k,使得关于X的方程f(x)=k在[0,+∞)上有两个不相等的

问题描述:

已知函数f(x)=e^x(x^2+ax-a)其中a是常数,若存在实数k,使得关于X的方程f(x)=k在[0,+∞)上有两个不相等的

f'(x)=e^x(x²+ax-a)+e^x(2x+a)=e^x[x²+(a+2)x]=e^x[x(x+a+2)]
若a+2=0,f'(x)≥0,所以f(x)在[0,+∞)上单调递增,不可能使f(x)=k有两个不相等的实根;
若a+2>0,则-a-2若a+20,所以f(x)在[0,-a-2)上单调递减,[-a-2,+∞)上单调递增,若使f(x)=k有两个不相等的实根,必须极小值f(-a-2)综上所述,a