如图,△ABC的三条角平分线交于点O,过点O作OE⊥BC于点E,求证:∠BOD=∠COE.

问题描述:

如图,△ABC的三条角平分线交于点O,过点O作OE⊥BC于点E,求证:∠BOD=∠COE.

证明:∵∠AFO=∠FBC+∠ACB=

1
2
∠ABC+∠ACB,
∴∠AOF=180°-(∠DAC+∠AF0)
=180°-[
1
2
∠BAC+
1
2
∠ABC+∠ACB]
=180°-[
1
2
(∠BAC+∠ABC)+∠ACB]
=180°-[
1
2
(180°-∠ACB)+∠ACB]
=180°-[90°+
1
2
∠ACB]
=90°-
1
2
∠ACB,
∴∠BOD=∠AOF=90°-
1
2
∠ACB,
又∵在直角△OCE中,∠COE=90°-∠OCD=90°-
1
2
∠ACB,
∴∠BOD=∠COE.