如图,△ABC的三条角平分线交于点O,过点O作OE⊥BC于点E,求证:∠BOD=∠COE.
问题描述:
如图,△ABC的三条角平分线交于点O,过点O作OE⊥BC于点E,求证:∠BOD=∠COE.
答
证明:∵∠AFO=∠FBC+∠ACB=
∠ABC+∠ACB,1 2
∴∠AOF=180°-(∠DAC+∠AF0)
=180°-[
∠BAC+1 2
∠ABC+∠ACB]1 2
=180°-[
(∠BAC+∠ABC)+∠ACB]1 2
=180°-[
(180°-∠ACB)+∠ACB]1 2
=180°-[90°+
∠ACB]1 2
=90°-
∠ACB,1 2
∴∠BOD=∠AOF=90°-
∠ACB,1 2
又∵在直角△OCE中,∠COE=90°-∠OCD=90°-
∠ACB,1 2
∴∠BOD=∠COE.