△ABC中,AD、BE、CF分别是三个内角的平分线,且相交于点O又OG⊥BC,垂足为G,求证:角BOD=角GOC

问题描述:

△ABC中,AD、BE、CF分别是三个内角的平分线,且相交于点O又OG⊥BC,垂足为G,求证:角BOD=角GOC
同题

证明:
∵∠BOD=∠ABO+∠BAO=∠BAC/2+∠ABC/2=(180度-∠ACB)/2=90度-∠ACB/2
=90度-∠OCB
∠GOC=90度-∠OCB
∴∠BOD=∠GOC