设函数在[0,1]上有连续导数,且∫(下0,上1)xf(x)dx=0,证明在[0,1]上至少存在一点c,使得c^2f'(c)=f(1)
问题描述:
设函数在[0,1]上有连续导数,且∫(下0,上1)xf(x)dx=0,证明在[0,1]上至少存在一点c,使得c^2f'(c)=f(1)
答
证明如下:
设函数在[0,1]上有连续导数,且∫(下0,上1)xf(x)dx=0,证明在[0,1]上至少存在一点c,使得c^2f'(c)=f(1)
证明如下: