数列{an}的通项公式为an=4n-1,令bn=a1+a2+… +ann,则数列{bn}的前n项和为______.

问题描述:

数列{an}的通项公式为an=4n-1,令bn

a1+a2+… +an
n
,则数列{bn}的前n项和为______.

∵an=4n-1,
∴数列{an}是首项为3,公差为4的等差数列,设其前n项和为Sn,则Sn=a1+a2+…+an=

(3+4n−1)•n
2

∴bn=
a1+a2+… +an
n
=
Sn
n
=
4n+2
2
=2n+1,
∴{bn}为首项是3,公差为2的等差数列,
∴数列{bn}的前n项和为
(3+2n+1)•n
2
=n2+2n.
故答案为:n2+2n.
答案解析:由an=4n-1,可知数列{an}为等差数列,从而可求得a1+a2+…+an,继而可求得bn与数列{bn}的前n项和.
考试点:等差数列的前n项和.

知识点:本题考查等差数列的前n项和,求得bn也是等差数列是关键,属于中档题.