已知坐标原点为O,A,B为抛物线y∧2=4x 上异于O的两点,且向量OA*向量OB=0 ,.已知坐标原点为O,A,B为抛物线y∧2=4x 上异于O的两点,且向量OA*向量OB=0 ,则绝对值向量AB的最小值为A4 B8 C16 D64 求解析
问题描述:
已知坐标原点为O,A,B为抛物线y∧2=4x 上异于O的两点,且向量OA*向量OB=0 ,.
已知坐标原点为O,A,B为抛物线y∧2=4x 上异于O的两点,且向量OA*向量OB=0 ,则绝对值向量AB的最小值为
A4 B8 C16 D64
求解析
答
当AB垂直x轴时应为最小值,根据A横纵坐标相等,再根据y∧2=4x ,则A(4,4),所以AB=8