已知函数f(x)的定义域为[0,1]且同时满足:①对任意x∈[0,1]总有f(x)≥2;②f(1)=3;③若x1≥0,x2≥0且x1+x2≤1,则有f(x1+x2)=f(x1)+f(x2)-2. (I)求f(0)的值; (II)求f(x)的
问题描述:
已知函数f(x)的定义域为[0,1]且同时满足:①对任意x∈[0,1]总有f(x)≥2;②f(1)=3;③若x1≥0,x2≥0且x1+x2≤1,则有f(x1+x2)=f(x1)+f(x2)-2.
(I)求f(0)的值;
(II)求f(x)的最大值;
(III)设数列{an}的前n项和为Sn,且Sn=−
(an−3)(n∈N*),求f(a1)+f(a2)+…+f(an). 1 2
答
(Ⅰ)令x1=x2=0,
由③知f(0)=2f(0)-2⇒f(0)=2;
(Ⅱ)任取x1x2∈[0,1],且x1<x2,
则0<x2-x1≤1,∴f(x2-x1)≥2
∴f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)
=f(x2-x1)+f(x1)-2-f(x1)=f(x2-x1)-2≥0
∴f(x2)≥f(x1),则f(x)≤f(1)=3.
∴f(x)的最大值为3;
(Ⅲ)由Sn=−
(an−3)知,1 2
当n=1时,a1=1;当n≥2时,an=−
an+1 2
an−11 2
∴an=
an−1(n≥2),又a1=1,∴an=1 3
1 3n−1
∴f(an)=f(
)=f(1 3n−1
+1 3n
+1 3n
)=f(1 3n
)+f(2 3n
)−21 3n
=3f(
)−4=3f(an+1)−41 3n
∴f(an+1)=
f(an)+1 3
4 3
∴f(an+1)−2=
(f(an)−2)1 3
又f(a1)-2=1∴f(an)−2=(
)n−1,∴f(an)=(1 3
)n−1+21 3
∴f(a1)+f(a2)++f(an)=2n+
−3 2
.1 2×3n−1