等差数列中,a16 a17 a18=a9=-36,前n项和为Sn.求Sn最小值,求Sn最小值时n的值

问题描述:

等差数列中,a16 a17 a18=a9=-36,前n项和为Sn.求Sn最小值,求Sn最小值时n的值

a16+a17+a18=a9=-36
3a17=a9=-36
3(a1+16d)=a1+8d=-36
a1=-60,d=3
Sn=na1+n(n-1)d/2=3/2(n^2-41n)=3/2(n-41/2)^2-5043/8
S20=3/2(20^2-41*20)=-630
S21=3/2(21^2-41*21)=-630
因此,当n=20,或n=21时,Sn最小值=-630