已知函数f(x)=x/x+3,数列an满足a1=1,a(n+1)=f(an) (n属于N+)

问题描述:

已知函数f(x)=x/x+3,数列an满足a1=1,a(n+1)=f(an) (n属于N+)
已知函数f(x)=x/x+3,数列an满足a1=1,a(n+1)=f(an) (n属于N+)
求 1)数列{an}的通项公式
2)若数列{bn}满足bn=(1/2)an*a(n+1)*3^n,Sn=b1+b2+b3+...+bn,求Sn

(1)∵an+1=an/an+3
∴1/a(n+1)=1+3/an(两边同除an*a(n+1)
设an=Tn
∴3(Tn+x)=T(n+1)+x
即解得x=1/2
∵T1=1/an=1
∴Tn+1/2=3^(n+1)(T1+1/2)=(3^n)/2
即an=2/(3^n-1)
∵bn=an/2*an+1*3^n=2*3^n/(3^n-1)(3^(n+1)-1)=(1/3^n-1) -(1/3^n+1-1)
∴Sn=b1+b2+……+bn=1/2-1/(3^(n+i)-1
天哪,总算打完了,还不懂的话尽管问……