如图,点P是正方形ABCD对角线BD上的一点,PE垂直BC,PF垂直CD,垂足分别为E、F.求证:AP=EF

问题描述:

如图,点P是正方形ABCD对角线BD上的一点,PE垂直BC,PF垂直CD,垂足分别为E、F.求证:AP=EF

看不见你的图呀!

证明:连接PC.
∵ 四边形ABCD是正方形
∴ AD=CD
又 ∵BD是正方形ABCD的对角线
∴∠ADB=∠CDB=90°
在△ADP与△CDP中
AD=CD
{ ∠ADB=∠CDB
PD=PD
∴△ADP≌△CDP(SAS)
∴AP=CP
又∵PE⊥BC,PF⊥CD,EC⊥FC
∴四边形ECFP是矩形
∴CP=EF
∴EF=AP