P为正方形ABCD所在平面外一点,PA⊥面ABCD,AE⊥PB,求证:AE⊥PC.

问题描述:

P为正方形ABCD所在平面外一点,PA⊥面ABCD,AE⊥PB,求证:AE⊥PC.

证明:∵PA⊥面ABCD,
∴PA⊥AD
又∵BC∥AD
∴PA⊥BC
又由AB⊥BC,PA∩AB=A
∴BC⊥平面PAB
又AE⊂平面PAB
∴BC⊥AE
又由AE⊥PB,BC∩PB=B
∴AE⊥平面PBC
又∵PC⊂平面PBC
∴PC⊥AE
答案解析:由已知中P为正方形ABCD所在平面外一点,PA⊥面ABCD,结合正方形的几何特征,我们易得到BC⊥平面PAB,由线面垂直的性质得到BC⊥AE,结合已知中AE⊥PB,及线面垂直的判定定理,得到AE⊥平面PBC,最后再由线面垂直的判定定理,即可得到AE⊥PC.
考试点:直线与平面垂直的判定;直线与平面垂直的性质.
知识点:本题考查知识点是直线与平面垂直的判定及直线与平面垂直的性质,其中熟练掌握正方形的几何特征及线面垂直的判定定理和性质是解答本题的关键.