正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ.求证:PQ∥平面BCE.

问题描述:

正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ.求证:PQ∥平面BCE.

证明:作PM∥AB交BE于M,作QN∥AB交BC于N,连接MN.∵正方形ABCD和正方形ABEF有公共边AB,∴AE=BD.又AP=DQ,∴PE=QB,又PM∥AB∥QN,∴PMAB=PEAE=QBBD,QNDC=BQBD,∴PMAB=QNDC,∴PM∥QN,且 PM=QN即四形PMNQ...