已知数列{an}的首项a1=2,an+1=2anan+2(n=1,2,3,…),则a2012=_.

问题描述:

已知数列{an}的首项a1=2,an+1=

2an
an+2
(n=1,2,3,…),则a2012=______.

∵an+1=

2an
an+2

1
an+1
=
an+2
2an
=
1
2
+
1
an

1
an+1
-
1
an
=
1
2

∴数列{
1
an
}是等差数列,公差d=
1
2
,首项
1
2

1
an
=
1
2
+
1
2
(n-1)=
n
2

即an=
2
n

∴a2012=
2
2012
=
1
1006

故答案为:
1
1006