如图,在四棱锥S-ABCD中,底面ABCD是正方形,SA⊥平面ABCD,且SA=SB,点E为AB的中点,点F为SC的中点. (Ⅰ)求证:EF⊥CD; (Ⅱ)求证:平面SCD⊥平面SCE.
问题描述:
如图,在四棱锥S-ABCD中,底面ABCD是正方形,SA⊥平面ABCD,且SA=SB,点E为AB的中点,点F为SC的中点.
(Ⅰ)求证:EF⊥CD;
(Ⅱ)求证:平面SCD⊥平面SCE.
答
证明:(Ⅰ)连接AC、AF、BF、EF、
∵SA⊥平面ABCD
∴AF为Rt△SAC斜边SC上的中线
∴AF=
SC(2分)1 2
又∵ABCD是正方形∴CB⊥AB
而由SA⊥平面ABCD,得CB⊥SA
∴CB⊥平面SAB∴CB⊥SB
∴BF为Rt△SBC斜边SC上的中线
BF=
SC(5分)1 2
∴△AFB为等腰三角形,EF⊥AB又CD∥AB∴EF⊥CD(7分)
(Ⅱ)由已知易得Rt△SAE≌Rt△CBE
∴SE=EC即△SEC是等腰三角形∴EF⊥SC
又∵SC∩CD=C∴EF⊥平面SCD又EF⊂平面SCE
∴平面SCD⊥平面SCE(12分)