设平面区域D由y=x,y=0和x=2所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)关于x的边缘概率密度在x=1处的值为
问题描述:
设平面区域D由y=x,y=0和x=2所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)关于x的边缘概率密度在x=1处的值为
答
均匀分布因此设f(x,y)=k.二重积分上下限分别(0,y)dx和(0,2)dy得2k=1,k=0.5
因此f(x,y)=0.5,f(x)=积分0.5,上下限分别(0,x)dy=0.5x因此F(X)=0.25X^2
求哪个值带进去得到答案