Xn+1=2*Xn*(1-Xn)通项公式如何求,
问题描述:
Xn+1=2*Xn*(1-Xn)通项公式如何求,
答
x(n+1)=-2[x(n)]^2+2x(n)=-2[x(n)-1/2]^2+1/2.
x(n+1)-1/2=-2[x(n)-1/2]^2
=(-2)*[(-2)(x(n-1)-1/2)^(2)]^(2)
=......
=(-2)^(2^(n)-1)*[x(1)-1/2]^(2^n)
x(n+1)=1/2+(-2)^(2^(n)-1)*[x(1)-1/2]^(2^n)
答
x(n+1)=-2[x(n)]^2+2x(n)=-2[x(n)-1/2]^2+1/2.
x(n+1)-1/2=-2[x(n)-1/2]^2
=(-2)^2*[x(n-1)-1/2]^(2^2)
=(-2)^3*[x(n-2)-1/2]^(2^3)
=.
=(-2)^n*[x(1)-1/2]^(2^n)
x(n+1)=1/2+(-2)^n*[x(1)-1/2]^(2^n).