与双曲线x^2/16-y^2/9=1有公共渐近线,且经过点a(2根号3,-3)的双曲线的一个焦点
问题描述:
与双曲线x^2/16-y^2/9=1有公共渐近线,且经过点a(2根号3,-3)的双曲线的一个焦点
答
可以设所求的双曲线为x²/16-y²/9=t,以已知点代入,得到:t=-1/4,再代入,则得到所求的双曲线方程是:y²/(9/4)-x²/(4)=1.其焦点为(0,±5/2).