已知椭圆x^2/16+y^2/4=1.过点P(2,1)引一条弦,使弦被这点三等分,求此弦所在的直线的方程和弦长.
问题描述:
已知椭圆x^2/16+y^2/4=1.过点P(2,1)引一条弦,使弦被这点三等分,求此弦所在的直线的方程和弦长.
是三等分!
答
设两交点坐标为A(x1,y1)、B(x2,y2),所求弦的斜率为k,则由点斜式可写出弦的直线方程:y-1=k(x-2),代入椭圆方程消y得:
x²/16+[1+k(x-2)]²/4=1,整理得
(4k²+1)x²-8k(2k-1)x+4(4k²-4k-3)=0,由韦达定理有
x1+x2=8k(2k-1)/(4k²+1) ………………①
x1*x2=4(4k²-4k-3)/(4k²+1) ………………②
因为点p(2,1)是弦AB的三等分点,由定比分点公式得
(x1+2x2)/3=2,整理得
x1+2x2=6 ………………③
①②③联立便可解出k的值,
①③联立解得
x1=2(4k²-8k-3)/(4k²+1)
x2=2(4k²+4k+3)/(4k²+1)
上两式代入②得
[2(4k²-8k-3)/(4k²+1)]*[2(4k²+4k+3)/(4k²+1)]=4(4k²-4k-3)/(4k²+1)
展开化简得
24k²+32k+6=0
解之得k=(-4±√7)/6
代回前面所设的弦的点斜式得到弦的直线方程为:
y=[(-4+√7)x+(14-2√7)]/6或y=[(-4-√7)x+(14+2√7)]/6