如图,在△ACB中,点D是AB边上的一点,且∠ACB=∠CDA;点E在BC边上,且点E到AC、AB的距离相等,连接AE交CD于点F.试判断△CEF的形状;并证明你的结论.

问题描述:

如图,在△ACB中,点D是AB边上的一点,且∠ACB=∠CDA;点E在BC边上,且点E到AC、AB的距离相等,连接AE交CD于点F.试判断△CEF的形状;并证明你的结论.

△CEF是等腰三角形,理由如下:证明:∵点E到AC、AB的距离相等,∴点E在∠CAB的平分线上,∴AE平分∠CAB,∴∠CAE=∠BAE,∵∠CEA=180°-∠CAE-∠ACB,∠DFA=180°-∠DAE-∠ADC.∵∠ACB=∠CDA,∴∠CEA=∠DFA,∵∠...