已知,a+1/(a+1)=b+1/(b-1)-2,且a-b+2不等于0,求ab-a+b的值.
问题描述:
已知,a+1/(a+1)=b+1/(b-1)-2,且a-b+2不等于0,求ab-a+b的值.
答
等式左右两边同时 +1
a+1/(a+1)+1=b+1/(b-1)-1
(a+1)+1/(a+1)=(b-1)+1/(b-1)
(a+1)-(b-1)=1/(b-1)-1/(a+1)
(a+1)(b-1)=1
ab-a+b-1=1
ab-a+b=2
这个解法最巧妙
想不到就死化
答
等式左右两边同时 +1
a+1/(a+1)+1=b+1/(b-1)-1
(a+1)+1/(a+1)=(b-1)+1/(b-1)
(a+1)-(b-1)=1/(b-1)-1/(a+1)
(a+1)(b-1)=1
ab-a+b-1=1
ab-a+b=2
答
上式可化为:a-b+2=1/(b-1)-1/(a+1)
a-b+2=(a-b+2)/(b-1)(a+1)
a-b+2≠0
所以:1=1/(b-1)(a+1)
即:(b-1)(a+1)=1
展开:ab-a+b-1=1
得:ab-a+b=2
答
a+1/(a+1)=b+1/(b-1)-2
(a+1)+1/(a+1)=(b-1)+1/(b-1)
令m=a+1, n=b-1
m+1/m=n+1/n
m-n=1/n-1/m=(m-n)/mn
(m-n)(1-1/mn)=0
因为m-n=a+1-b+1 =a-b+2
而题目的条件是a-b+2≠0
所以m-n≠0
所以1-1/mn=0
mn=1
所以
ab-a+b
=a(b-1)+b
=a(b-1)+b-1+1
=(a+1)(b-1)+1
=mn+1
=1+1
=2