试说明:无论x,y取何值时,代数式(x3+3x2y-5+6y3)+(y3+2xy2+x2y-2x3)-(4x2y-x3-3xy2+7y2)的值是常数.
问题描述:
试说明:无论x,y取何值时,代数式(x3+3x2y-5+6y3)+(y3+2xy2+x2y-2x3)-(4x2y-x3-3xy2+7y2)的值是常数.
要具体过程,注意格式
答
(x^3+3x^2y-5xy^2+6y^3)+(y^3+2xy^2+x^2y-2x^3)-(4x^2y-x^3-3xy^2+7y^3)
=x^3+3x^2y-5xy+6y^3+y^3+2xy^2+x^2y-2x^3-4x^2y+x^3+3xy^2-7y^3
=(x^3-2x^3+x^3)+(3x^2y+x^2y-4x^2y)+(-5xy^2+2xy^2+3xy^2)+(6y^3+y^3-7y^3)
=0+0+0=0
可知:代数式的值与x,y的取值无关.