已知函数F(x)=x^3+bx^2+cx+d的图像过点p(0,2),且在点M(-1,f(-1))处的切线方程为6x-y+7=0,求函数解析式
问题描述:
已知函数F(x)=x^3+bx^2+cx+d的图像过点p(0,2),且在点M(-1,f(-1))处的切线方程为6x-y+7=0,求函数解析式
答
F(0)=d=2,故知:d的值为2又因为直线6x-y+7=0过点(-1,b-c+1)故:-6-b+c-1+7=0,推出b=cF(x)=x^3+bx^2+bx+2m(-1,1)求导:F`(x)=3x^2+2bx+b可以求出切线方程为:y-1=F`(-1)(x+1)y-1=(3-b)(x+1)与题目中所给的切线方...