已知关于x的一元二次方程x2+cx+a=0的两个整数根恰好比方程x2+ax+b=0的两个根都大1,求a+b+c的值.
已知关于x的一元二次方程x2+cx+a=0的两个整数根恰好比方程x2+ax+b=0的两个根都大1,求a+b+c的值.
设方程x²+cx+a=0的两个整数根为:x1,x2,则:
x1+x2=-c,x1x2=a。
依题意可知:
方程x²+ax+b=0的两个根为:x1-1,x2-1,则:
x1-1+x2-1=-a, (x1-1)(x2-1)=b,
所以x1+x2=-a+2=-c, x1x2-(x1+x2)+1=a+c+1=b,
即c=a-2, b=a+c+1=2a-1。
又因为方程x²+cx+a=0的两个根都是整数,
即方程x²+(a-2)x+a=0的两个根都是整数,则:
a是整数,且(a-2)^2-4a>0,
a^2-8a+4>0,
所以a>=8,或a试算,可得:
a=8时,c=6,b=15,
方程x²+cx+a=0的两个根为:-2,-4;
方程x²+ax+b=0的两个根为:-3,-5;
满足题设条件。
故a+b+c=29;
a=0时,c=-2, b=-1,
方程x²+cx+a=0的两个根为:2,0;
方程x²+ax+b=0的两个根为:1,-1;
满足题设条件。
故a+b+c=-3。
设方程x2+ax+b=0的两个根为α,β,∵方程有整数根,设其中α,β为整数,且α≤β,则方程x2+cx+a=0的两根为α+1,β+1,∴α+β=-a,(α+1)(β+1)=a,两式相加,得αβ+2α+2β+1=0,即(α+2)(β+2)=3,∴...
答案解析:设出第一个方程的两根,表示出后面方程的另2根.利用根与系数的关系均得到与a的关系,进而消去a,得到两个一次项的积为一个常数的形式,判断可能的整数解,得到a,b,c的值,相加即可.
考试点:一元二次方程的整数根与有理根.
知识点:主要考查一元二次方程根与系数关系的应用;利用根与系数的关系得到两根之间的关系是解决本题的关键;消去a后得到两个一次项的积为一个常数的形式是解决本题的难点.