设方阵a满足e-2a-3a^2+4a^3+5a^4-6a^5=0证明e-a可逆
问题描述:
设方阵a满足e-2a-3a^2+4a^3+5a^4-6a^5=0证明e-a可逆
答
对-6x^5+5x^4+4x^3-3x^2-2x+1用-x+1作带余除法:-6x^5+5x^4+4x^3-3x^2-2x+1=(-x+1)(6x^4+x^3-3x^2+2)-1把x用A代换,可得(-A+E)(6A^4+A^3-3A^2+2E)-E=0,从而E-A可逆,且(E-A)^(-1)=6A^4+A^3-3A^2+2E...