设A为N阶方阵,满足A^K=0,证明E-A可逆,并且(E-A)^-1=E+A+A^2+...+A^K-1

问题描述:

设A为N阶方阵,满足A^K=0,证明E-A可逆,并且(E-A)^-1=E+A+A^2+...+A^K-1

(E-A)(E+A+A^2+...+A^K-1)
= E+A+A^2+...+A^K-1 - (A +A^2+...+A^K)
= E - A^k = E
所以:E-A可逆,并且(E-A)^-1=E+A+A^2+...+A^K-1