设n阶方阵A满足A的平方-5A+7E=0,证明3E-A可逆,并求(3A-E)的逆矩阵
问题描述:
设n阶方阵A满足A的平方-5A+7E=0,证明3E-A可逆,并求(3A-E)的逆矩阵
答
A*A - 5A +7E
= A(A-3E) - 2A +7E
= A(A-3E) -2(A-3E)+E
=(A-2E)(A-3E)+E
=0
∴(A-3E)(E-2A)=E
∴A-3E 可逆,逆矩阵是E-2A