如图,已知三角形ABC中,AB=AC,点D.E分别在AB和AC的延长线上,且BD=CE,连接DE交BC于

问题描述:

如图,已知三角形ABC中,AB=AC,点D.E分别在AB和AC的延长线上,且BD=CE,连接DE交BC于

证明:
1、在△AEC和△ADB中,∠BAC是公共角,△AEC和△ADB中有一个角是直角(已知),所以
△AEC∽△ADB,所以∠ABD=∠ACE
在△ABP和△QCA中,∠ABD=∠ACE(已证),BP=AC(已知)CQ=AB(已知)
所以△ABP≌△QCA,所以AP=AQ(对应边相等)
2、△ABP≌△QCA,所以∠QAC=∠APB,
在△ADP中∠ADP=90度,∠PAC=90-∠BPA,∠QAC=∠BPA(已证)
∠QAP=∠QAC+∠PAC=∠QAC+90-∠BPA=90,所以AP垂直AQ