求函数u=x+y+z在条件1/x+1/y+1/z=1,x>0,y>0,z>0下的极值

问题描述:

求函数u=x+y+z在条件1/x+1/y+1/z=1,x>0,y>0,z>0下的极值

属于条件极值
使用拉格朗日最小二乘法
构造函数:
F(x,y,z)=x+y+z+λ(1/x+1/y+1/z-1)
分别为x,y,z求导
Fx'(x,y,z)=1-λ/x^2
Fy'(x,y,z)=1-λ/y^2
Fz'(x,y,z)=1-λ/y^2
并令之为0
则x^2=y^2=z^2=λ
而x>0,y>0,z>0
1/x+1/y+1/z=1
则x=y=z=3

x+y+z=9