如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A,D不重合),G,F,H分别是BE,BC,CE的中点.(1)证明:四边形EGFH是平行四边形;(2)在(1)的条件下,若EF⊥BC,且EF=12BC,证明:平行四边形EGFH是正方形.

问题描述:

如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A,D不重合),G,F,H分别是BE,BC,CE的中点.

(1)证明:四边形EGFH是平行四边形;
(2)在(1)的条件下,若EF⊥BC,且EF=

1
2
BC,证明:平行四边形EGFH是正方形.

证明:(1)∵G,F分别是BE,BC的中点,
∴GF∥EC且GF=

1
2
EC.
又∵H是EC的中点,EH=
1
2
EC,
∴GF∥EH且GF=EH.
∴四边形EGFH是平行四边形.
(2)连接GH,EF.
∵G,H分别是BE,EC的中点,
∴GH∥BC且GH=
1
2
BC.
又∵EF⊥BC且EF=
1
2
BC,
又∵EF⊥BC,GH是三角形EBC的中位线,
∴GH∥BC,
∴EF⊥GH,
又∵EF=GH.
∴平行四边形EGFH是正方形.
答案解析:通过中位线定理得出GF∥EH且GF=EH,所以四边形EGFH是平行四边形;当添加了条件EF⊥BC,且EF=
1
2
BC后,通过对角线相等且互相垂直平分(EF⊥GH,且EF=GH)就可证明是正方形.
考试点:正方形的判定;三角形中位线定理;平行四边形的判定.

知识点:主要考查了平行四边形的判定和正方形的性质.正方形对角线的特点是:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角.